
10 best practices to 
succeed at cloud
Author: Maciej Bulwan, Senior Cloud Architect at Webellian

WHITE PAPER



We anticipate, lead, and support your Digital 
Transformation.

Webellian is a privately owned French-Polish company founded in 2012 with headquar-
ters in Warsaw, Poland.

Our international culture supports the Digital Transformation of big brands and global 
corporations, trusting us with their complex IT projects. Webellian is a fully integrated Digi-
tal Transformation and IT consulting firm helping its clients to face today's challenges and 
tomorrow's uncertainties by building long term partnerships and sustainable solutions. 
Our expertise ranges from bespoke software development to building Cloud solutions, 
from creating data solutions to building complex models.

With our passion for innovation, technology, and excellence, we empower you to move 
confidently forward on your Digital Transformation journey.

For more information go to webellian.com

© 2020 Webellian. All rights reserved. This document 
is provided “as is.” Information and views expressed in 
this document, including URL and other internet 
website references, may change without notice. You 
bear the risk of using it



Intro

Cloud is the foundation for the agile business world. It’s the platform for enabling agile 
application development. Cloud-based infrastructure is key to delivering flexible, on-de-
mand access to the resources underpinning new digital business offerings. It allows 
organisations to scale infrastructure as needed to support changing business priorities 
while reducing the risks of wasted IT resources that inhibit investments in new digital 
services.

When it comes to the cloud transition, for many enterprises, success or failure ties directly 
to the effectiveness of their IT service delivery environment. 

Our goal here is to show you how you can successfully undertake your digital transforma-
tion and what to watch out for when planning, designing and implementing your transi-
tion to the Cloud. 

© Webellian

Maciej Bulwan
Senior Cloud Architect
Webellian



There has been a lot of talk about multi-cloud. We can 
see two distinctive approaches for using multiple cloud 
providers:

• Cloud-native: taking advantage of proprietary 
offerings from different cloud providers and using 
the best-of-breed combinations for various busi-
ness applications.

• Cloud-agnostic: delivering portable workloads that 
do not depend on proprietary features and can be 
deployed anywhere “easily”. 

The most often cited reason for using the “cloud-agnos-
tic” strategy is to avoid being locked in with a single 
vendor. We often distrust cloud vendors regarding their 
future pricing, potential product discontinuation, a road-
map for new services, and data privacy implementations. 
While each of these arguments is valid, we may some-
times miscalculate the risk-benefit ratio. With a notable 
exception of GCP, other major vendors have so far 
demonstrated great discipline for not discontinuing offer-
ings and keeping costs stable (if not lowering them over 
time). 

When If you keep multiple clouds compatible, you will 
most likely:

• Pay more. When you run 33% of your workload 
on Azure, the other 33% on AWS, and the rest on 
Google Cloud Compute, you are effectively frag-
menting you spend and automatically diminishing 
your bargaining position to secure discounts from 
Enterprise Agreements. All vendors encourage 
customers to use more by offering either tiered 
pricing or volume pricing that is characterized by 
unit price going down when the quantity of 
resources used increases. Savings are achieved by 
spend consolidation, not fragmentation.  

Best Practice 1. Do not avoid vendor lock-in at all costs. In some cases betting on one single Cloud 
implementation can significantly benefit you. We encourage you to dive deep into one only cloud 
provider. You can get a much better deal and a vast improvement in agility if you pick the best 
features of one cloud vendor that are most suitable your business case. If you’re an innovative  
you’d better focus on delivering what your business need.

Multi-cloud and vendor lock-in avoidance

• Miss out on cutting-edge features. Some 
vendors have outstanding technology, but 
it’s proprietary to them and them only. 
Google might have the best big data ware-
house (BigQuery), Microsoft might have the 
best services for Office tools, and AWS - the 
best ML services, but by being vendor-neu-
tral, you miss out on those. Staying 
cloud-agnostic forces you to discard plenty 
of revolutionary and proprietary solutions 
that each vendor has to offer.

• Reduce business agility. By trying to be 
everywhere, you waste time and effort to 
make your workload portable in between 
public clouds. Except for dockerized appli-
cations, configurations of all other services 
(load balancing, network routing, monitor-
ing, firewalls, identity services, H/A 
behaviour) are dominantly incompatible. It 
takes significant engineering time and 
effort to develop CI/CD pipelines, ensure the 
same performance, configure equivalent 
security, and effective disaster recovery 
routines to guarantee unified workload 
deployment and runtime characteristics 
across multiple vendors.

• Experience skills shortage. Finding and 
keeping the right people is a non-trivial 
challenge.  You may be unlikely to find 
experts deeply knowledgeable in solutions 
from all major cloud providers. Talent is 
often in short supply, and attracting/retain-
ing such a broad expertise pool will cost 
you.

© Webellian



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Best Practice 2. Decide on what 
matters to you and assess other 
migration strategies that better 
support your goal. “Lift and Shift” 
seems easy, but it often isn’t. It 
can create many other problems 
that you wouldn’t expect and it 
doesn't necessarily solved your 
exsiting problems.

There are more migration strategies than the “Lift and 
Shift”

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

There are at least six different strategies when moving to 
the Cloud: Re-host, Re-purchase, Re-platform, Re-archi-
tect, Retain, Retire. The most popular one, Re-host, is 
also known as the “Lift and Shift.”

When you decide to migrate to the cloud, it may seem 
reasonable to vacate your on-premise data centres and 
just rehost all IT inventory in the cloud. You can see a vast 
selection of c ompute, storage, network, security man-
agement building blocks in all public clouds, so you start 
planning to “re-host” everything. This approach, howev-
er, doesn’t always work that well:

• After applications are relocated to different envi-
ronments, they start demonstrating issues you 
haven’t observed before. Changed IP address 
ranges, virtual machine sizing, disk controllers, 
network shared file system incompatibilities make 
“Lift and Shift” turns silently into “move-and-im-
prove,”  with the “improve” part becoming signifi-
cantly time-consuming. 

• You rarely save on the amount of resourced 
consumed only by moving to the cloud. Savings 
come from elasticity, which is the ability of the 
cloud environment to allocate and dispose of 
resources dynamically depending on the current 
workload. Most “on-premise” applications do not 
handle elasticity.

• By simply rehosting, you gain very little agility from 
migration because you aren’t changing IT opera-
tions. The way you maintain servers, deploy appli-
cations, monitor them, and respond to incidents 
doesn’t improve.

It’s better to identify what matters most to you and 
adjust migration strategy accordingly:

• Infrastructure cost savings,

• Improvement in staff productivity,

• Operational resilience,

• Business agility.

© Webellian



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

One of the ways cloud providers attract customers 
is the elasticity of resource provisioning, which is 
the ability to discard resources when they are not 
needed and instantiate them when required to 
serve increased workload. 

The most obvious pricing model that aligns nicely 
with elasticity is “pay-per-hour”, also known as 
“Pay-As-You-Go”. This pricing model is typically 
the first option we see and consider. But the most 
straightforward pricing model is rarely the most 
cost-efficient.  You might be overpaying by 
20-40% compared to pricing based on usage 
commitment.

Upfront

Effective hourly

Annual Cost

Discount

AWS
C5.xlarge (4vCPU/ 8GB)

--

$0.194

$1,700

$999

$0.114

$1,000

41%

$510

$0.166

$1,450

40%

$0

$0.122

$1,070

37%

Pay as you go
1y

All upfront
1y

Partial upfront
1y

No upfront

Upfront

Effective hourly

Annual Cost

Discount

Azure 
D3 (4vCPU / 14G RAM)

--

$0.3080

$2,698

--

$0.2098

$1,838

32%

--

--

--

--

--

--

Pay as you go
1y

All upfront
1y

Partial upfront
1y

No upfront

Upfront

Effective hourly

Annual Cost

Discount

Google Cloud
n1-standard4
(4vCPU / 15G RAM)

--

$0.2448

$2,145

--

$0.1541

$1,350

37%

--

$0.1710

$1,498

30%

--

$0.2200

$2,145

10%

Pay as you go
1Y

Committed usage
Sustained Use

(100%)
Sustained Use

(50% time)

DISCOUNT COMPARISON STRATEGY (1 VM MATRIX)

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

To understand why we need to think about how 
cloud vendors plan for investment into infrastruc-
ture powering their offering.  They need to have 
slightly more capacity than all of us may need, but 
not that much for it to stay idle. They benefit 
significantly from the predictability of demand, 
and they are willing to reward us with discounts 
when we help them anticipate our future needs. 
They also reward us with pricing discounts for our 
dedication to utilising the requested infrastructure 
for a prolonged period. Duration of our commit-
ment is the most critical factor that impacts 
discounts available to us (1yr, 3yr).

Reserving instances:

• With AWS, you have three options: no-up-
front, full-upfront, and partial-upfront 
payment. The more of your commitment 
you’re willing to pay up-front, the better 
effective discount on the hourly charge.

• With Azure, there is no option for partial 
up-front. It’s full up-front in one go or split 
into monthly instalments, but no clear 
savings between monthly and annual 
up-front. Interestingly, Microsoft will allow 
you to renege on your commitment at a fee 
(12%) and under some conditions.

• As an alternative to the 1y / 3y  “Committed 
Usage” contract option, Google Cloud Com-
pute offers discounts for “Sustained Use”.  
They measure the percentage of time your 
machine is up and running every month. The 
higher the measurement metric, the better 
the ‘per-hour’ rate for which you are 
charged.  It discourages erratic provisioning 
of compute resources and incentivises 
planned and sustained consumption.

Hourly prices go down when you commit to using 
it (AWS, Azure, GCP) or actually use it (GCP).

Remember the fundamentals: When you declare 
your future utilisation, you’re helping cloud provid-
ers planning their investment into data centres. In 
return, you get rewarded with better effective 
hourly-rates.

When you dive into pricing options deeper, you will 
find even more exciting pricing offerings:     

• “Spot instances” - you’re buying a reserva-
tion at a discounted price but agree it may 
be decommissioned suddenly.

• “Convertible” reservations: you can 
upgrade the specifications of the virtual 
machine.

• “Savings plans” - you can flexibly change 
VM specs (region, operating system, family, 
size) as long as you commit to spending a 
predefined amount of dollars per hour.

© Webellian

Let’s talk about pricing



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

One of the ways cloud providers attract customers 
is the elasticity of resource provisioning, which is 
the ability to discard resources when they are not 
needed and instantiate them when required to 
serve increased workload. 

The most obvious pricing model that aligns nicely 
with elasticity is “pay-per-hour”, also known as 
“Pay-As-You-Go”. This pricing model is typically 
the first option we see and consider. But the most 
straightforward pricing model is rarely the most 
cost-efficient.  You might be overpaying by 
20-40% compared to pricing based on usage 
commitment.

Best Practice 3. The simplest pricing 
model will most likely cost you more: 
you may overpay by 30% over the 
price you would pay otherwise. The 
more commitment you can make, the 
higher discounts and better pricing 
you can get. Take your time, analyse 
different pricing models, and pick the 
one that suits your needs better. Do 
not use ‘pay-as-you-go’ when you 
already have a predictably consistent 
workload.

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

To understand why we need to think about how 
cloud vendors plan for investment into infrastruc-
ture powering their offering.  They need to have 
slightly more capacity than all of us may need, but 
not that much for it to stay idle. They benefit 
significantly from the predictability of demand, 
and they are willing to reward us with discounts 
when we help them anticipate our future needs. 
They also reward us with pricing discounts for our 
dedication to utilising the requested infrastructure 
for a prolonged period. Duration of our commit-
ment is the most critical factor that impacts 
discounts available to us (1yr, 3yr).

Reserving instances:

• With AWS, you have three options: no-up-
front, full-upfront, and partial-upfront 
payment. The more of your commitment 
you’re willing to pay up-front, the better 
effective discount on the hourly charge.

• With Azure, there is no option for partial 
up-front. It’s full up-front in one go or split 
into monthly instalments, but no clear 
savings between monthly and annual 
up-front. Interestingly, Microsoft will allow 
you to renege on your commitment at a fee 
(12%) and under some conditions.

• As an alternative to the 1y / 3y  “Committed 
Usage” contract option, Google Cloud Com-
pute offers discounts for “Sustained Use”.  
They measure the percentage of time your 
machine is up and running every month. The 
higher the measurement metric, the better 
the ‘per-hour’ rate for which you are 
charged.  It discourages erratic provisioning 
of compute resources and incentivises 
planned and sustained consumption.

Hourly prices go down when you commit to using 
it (AWS, Azure, GCP) or actually use it (GCP).

Remember the fundamentals: When you declare 
your future utilisation, you’re helping cloud provid-
ers planning their investment into data centres. In 
return, you get rewarded with better effective 
hourly-rates.

When you dive into pricing options deeper, you will 
find even more exciting pricing offerings:     

• “Spot instances” - you’re buying a reserva-
tion at a discounted price but agree it may 
be decommissioned suddenly.

• “Convertible” reservations: you can 
upgrade the specifications of the virtual 
machine.

• “Savings plans” - you can flexibly change 
VM specs (region, operating system, family, 
size) as long as you commit to spending a 
predefined amount of dollars per hour.

© Webellian



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

© Webellian

Following new trends



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Best Practice 4. New cloud technologies are often exciting. Just be a little bit patient and wait for 
them to mature. Experiment with features and build POC before making critical architectural deci-
sions. Usually, proper re-design of software architecture is required to fit existing applications into 
new paradigms, frameworks or platforms; simplistic ‘refactoring’ does not yield sufficient advan-
tage from using new and ‘revolutionary’ technology. The good thing with the cloud is that you can 
relatively quickly build prototypes and run tests. Take advantage of that and try before you buy! 
Last but not least, calculate the cost to benefit ratio.

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

It’s essential to think more carefully and plan the 
exact location for your data and servers. Why?

• Cost. Charges for using services, infrastruc-
ture, and data storage/transfers vary per 
region. If you place data in the wrong location, 
you pay more. Moving data in and out of a 
cloud geographical location costs much more 
than moving data within the same region’s 
boundaries. Infrastructure costs also vary 
geographically.

• Latencies. You may experience latencies. Data 
needs to travel from one country to another, 
and the geographic distance results in addi-
tional journey time. These extra latencies 
always translate to lower application perfor-
mance because applications need to wait for 
data to arrive. 

• Compliance. Some regulations require your 
data to be stored in one jurisdiction, e.g., data 
should not leave the European Union. If you 
inadvertently place data in an incorrect region, 
you might be in breach of local regulations. 

Serverless

Serverfull

$352

$280

MONTHLY COST

• Cutting-edge features. The availability 
of features is different across different 
regions. Some regions are lagging 
behind a lot when it comes to the avail-
ability of new features. You may want to 
store application data in the cloud loca-
tion where the largest selection of most 
recent new features is available. 

• Disaster-recovery. You need to be care-
ful where data is placed so that when a 
region becomes unavailable, it doesn’t 
cascade down to applications that 
would otherwise be fine. 

Best Practice 5. Consider where 
to place your data carefully, taking 
into account all requirements and 
data related regulations in your 
industry.

© Webellian

Region selection



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

Best Practice 6. Consider using a new generation of networking solutions. Explore possibilities 
software-defined networking offers to you. AppWANs create encrypted and secure communication 
tunnels between service endpoints and clients running in the cloud and on-premise. Implementation 
of Zero Trust Network Access and Micro Segmentations architectural principles address strict security 
requirements for hybrid- and multi-cloud deployments. You can also run AppWANs on top of the 
Internet as they improve its performance (better route selection, protocol enhancements, use of cloud 
operators’ backbone networks) and replace the need for flawed VPN.

You are about to move to the Cloud. You have 
already selected a geographical region to host 
your infrastructure. Now, you need to connect 
to the Cloud either from your on-premise infra-
structure or from a private data centre or your 
laptops. 

• You can use the Internet connection. 
However, it’s not natively secure, and it 
needs at least VPN tunnelling to ensure 
data privacy and confidentiality.  There 
are several issues with VPNs. Corporate 
VPNs are often seen as potential back-
doors because they open access to large 
segments of networks, and the philoso-
phy that “once you’re in, you’re trusted” is 
seen as too lax.  Creating and maintain-
ing multiple one-to-one VPN connections 
is complicated; the performance penalty 
is not negligible either.

• An alternative is to create new or extend 
existing physical links. That requires 
contacting an ISP provider and ordering 
dedicated connections directly from your 
office to cloud edge locations or cloud 
provider partners’ data centres. It 
becomes an expensive alternative to the 
Internet. Moreover,  you still have a 
dependency on a single ISP, and it may 
be unavailable to you unless your 
on-premise data centre is located conve-
niently in a large city.

Take a good look at your network infrastructure

© Webellian



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

Best Practice 7. Do not rely only on cloud providers to secure your backups. Data losses and 
outages happen. Cloud providers cannot protect you from it completely. You should have a disaster 
recovery plan, implement backups according to that plan, and  - most importantly - have a working 
and realistic disaster recovery strategy. You should also test your recovery procedures regularly.  
We can see that recovery plans become stale very soon, and they are not updated and tested often 
enough to stay up-to-date with production systems.  When designing and testing a recovery plan, 
you do not have to obsess about the ‘asteroid’ hitting us-east coast nightmare excessively. Instead, 
a more realistic scenario, like database corruption, a malicious virus activity, or human errors are 
disastrous enough to trigger disaster recovery processes that you want to have tested.

Your Cloud provider will only partially secure your need 
for backups

Cloud providers take backups of services and infra-
structure in the Cloud. It is only partially true, and you 
need to be aware of several caveats:

• They only create backups of selected types of 
services (database, cache, elasticsearch, block 
devices). 

• Backups aren’t always enabled by default. You 
may need to explicitly specify the option for creat-
ing automatic backups, either during the initial 
resource creation or subsequent configuration. 
Often automated backup configuration will be as 
easy as specifying retention, encryption options, 
and time and duration of backup windows, but 
you need to do it yourself nonetheless.

• Frequency and retention of automated backups 
aren’t always consistent between different 
services. For example, AWS Elasticsearch auto-
mated backups are taken hourly and kept for 14 
days. RDS database automatic snapshots are 
taken once a day and stored for one or seven 
days, depending on how you created the data-
base instance. You may need to adjust 
auto-backup parameters to suit your data recov-
ery policies. However, to guarantee data consis-
tency across many services, you will most likely 
require a well-thought DR plan with custom 
backups implemented.

• Backups are often taken to allow 
recovery of an entire cluster or 
instance. You may not be able to 
restore a selected index, selected file, 
or individual table.

• Automic backups or snapshots may 
not be available to you in a different 
cloud region unless you implement 
cross-region shipping/replication by 
yourself.  When cloud outages happen, 
and they do, your DR strategy may 
require that you re-launch the system 
in another location from recent back-
ups (RPO = Recovery Point Objective) 
within a specified time (RTO = Recov-
ery Time Objective). With automated 
and unreplicated snapshots you may 
never be able to achieve your objec-
tives for recovery.

© Webellian



New platforms or a new generation of software 
tools are exciting when announced. They are 
often advertised as remedies to many challenges 
we are facing. It makes us think they are likely to 
make our problems go away, and we adopt them 
as soon as possible. Our experience tells us that, 
by following new trends blindly, you can often put 
yourself in a situation where you risk:

• Wasting valuable time. Can you recall 
how complicated and expensive it was to 
set up a Hadoop ecosystem 12 years ago 
for the first few years? We can remember 
administrators studying for months to 
obtain certifications in Hadoop installa-
tions. Eventually, its distributions became 
consistent and stable, use-cases became 
more evident, anti-patterns emerged over 
time, and more business intelligence and 
ETL tools added support. Still, pioneers had 
plenty of frustrating experiences at first.

• Gain little. When containers started being 
popular, they quickly became synonymous 
with microservice architectures. We have 
seen many monolithic applications repack-
aged as multiple equally large containers 
and called microservices. True, it was 
easier to ship them between environments, 
but many underlying problems (dependen-
cies, reusability, session state manage-
ment) haven't disappeared.

• Observing problems you haven’t seen 
before. Early releases of serverless func-
tions, known as lambda, brought plenty of 
surprising and painful problems. Function 
executions weren’t always as fast as func-
tions required warm-up and suffered from 
cold start problems. It was more difficult to 
collect meaningful application logs and 
trace problems until logging and tracing 
requests across distributed executions 
became easier. Sudden and large spikes in 
traffic used to cause parallel lambda 

executions to spawn uncontrolled and 
consume all available IP addresses. As a 
result, subnets in which serverless func-
tions executed could malfunction from 
starvation of the IP address pool.  While 
lambdas scaled nicely, your servers 
couldn’t because there were no spare IP 
addresses to allocate that were needed to 
scale out! Most of the problems got eventu-
ally solved (throttling via concurrency 
provisioning), but it took time for technolo-
gy to mature, and early adopters had their 
share of surprises.

• Cost. Quite often, early releases of new 
frameworks, services, platforms miss out 
features that help optimize their capacity 
(metric collection, throttling, tooling for 
quick provisioning/deprovisioning, observ-
ability in the context of distributed system 
architecture) which makes early deploy-
ments of them not cost-optimal. It may be 
difficult to scale them up/down accordingly, 
and - to stay on the safe side - companies 
are forced to overprovision (=overpay).

 

Let’s have a look at an example:

We need to serve web application report pages 
to eight concurrent users in parallel. Every request 
takes one second and requires 1 GB of RAM to 
produce a resulting report page. At eight requests 
per second, serverless execution will need to 
make 21 million calls a month (28k per hour, 700k 
a day), and your monthly bills for lambda usage 
will stand at $352.

If - instead - you decide to instantiate a virtual 
machine with eight virtual cores and 16GB RAM 
(c5.2xlarge) - roughly the capacity sufficient to 
serve the same content - you will pay $280 a 
month. Running a server is 20% cheaper than 
serverless in this case! 

Furthermore, you can pre-pay this server up-front for 
one-year - that will further reduce the cost down to 
$176, which in result offers you a 50% reduction off 
the original ‘serverless’ price.

Best Practice 8. Security in the cloud 
is your responsibility! You decide how 
you implement your system’s security: 
what encryption protocols are used, 
what access policies look like, how 
complex and long-lived passwords 
are, which network ports and IP 
addresses are allowed to traverse 
firewalls, how often you rotate access 
or encryption keys, what security 
patches you install on servers you 
manage, and so forth.

It’s true that Cloud Providers are responsible for 
the security of the cloud. That includes the physical 
security of data centres and infrastructure, but if 
you leave it like this, you will be left with:

• Unencrypted network traffic,

• Unencrypted data,

• Too weak password policy,

• Too permissive access levels,

• Operating systems vulnerable to certain 
types of attacks

Who's responsible for security?

© Webellian



Best Practice 9. Explore the idea of 
separating workloads into several 
accounts. You may want to keep 
testing environments separate from 
production environments. You can 
further separate them by a distinctive 
business function; you may also 
maintain different accounts to keep 
Identity Management and access 
policies. Source code, build, and deliv-
ery pipelines could all also reside in an 
account separate from other applica-
tions. It’s often easier to design a 
multi-account strategy early in the 
process of moving to the cloud.

We all start small, with a single cloud account, and 
start growing from there. We add users. Over time, 
these users are assigned more and more permis-
sions. We add more networks and subnets to 
separate the growing number of workloads. We 
deploy both customer-facing applications and 
back-office applications. Software Engineers 
responsible primarily for the maintenance of 
back-office applications gain access to parts of 
the system where customer-facing systems 
reside. We build different categories of environ-
ments: development, testing, integration, produc-
tion. When we set up the environment this way we 
eventually end up with a messy environments 
exposed to potential:

• Data leaks,

• Data integrity loss,

• Exceeded account limits,

• Running out of the capacity of shared 
resources,

• Blast radius propagation

The complexity of your cloud environment will 
grow over time, hand in hand with your business’ 
growth. Hosting all services in a single account will 
eventually lead to an operational mess where the 
management of cost, security, and performance 
will become difficult.

© Webellian

 

Account structure



Best Practice 10. Aim to automate IT operation processes from the start. Do not let automation be 
merely an afterthought and keep adding to your technical debt. 

Configure rules preventing changes to resources that would lead to suboptimal configurations of 
security and compliance standards (e.g., creating publicly readable files storing unencrypted backups, 
web services with unsafe endpoint URLs).    

Implement self-repair whenever possible; when free disk space on a virtual machine drops below a 
specified threshold, a new disk can be added automatically.

When looking for unusual spikes in traffic, enable machine-learning-based, adaptive,  anomaly 
detection algorithms that can adjust observations by seasonality. 

Keep build automation around software deployments; pipelines can easily use blue/green or canary 
types of delivery that ensure the much-improved quality of software deployments and eliminate 
configuration drift.

Take advantage of automated scaling; system administrators no longer need to adjust capacity 
periodically.

When migrating to the cloud, we often try to re-use as many 
existing, non-cloud processes and tools as we can. They have 
worked so far on-premise and are well battle-tested. We 
cannot afford the time to make too many changes at once. 
After all, we have the right people: trained, smart, knowledge-
able, and dedicated. They know and fluently use all the tools at 
their disposal and have executed processes many times 
enough to be efficient. Our IT operations teams use the very 
same monitoring, alerting, system intrusion detection applica-
tions they used before. They run the same scripts to archive 
logs; the same daily job to check for the number of database 
connection failures; they use the same application to check free 
disk space on the database server disks. Is it good enough?

One of the most significant advantages of cloud computing is 
the vast selection of tools for automation, resource provision-
ing, anomaly detection, and error handling.  Automation can 
enhance processes; IT personnel will spend less time carrying 
out repetitive tasks. Continuous Test and Deployment pipelines 
will allow developers to focus on building features that matter 
to your customers.  With automation, you can reduce opera-
tional cost originating from investigating and fixing of manual 
errors.  

© Webellian

Automation of IT Processes



© Webellian

 

One page summary

Best Practice 1. Do not avoid vendor lock-in at all costs. In 
some cases betting on one single Cloud implementation can 
significantly benefit you. We encourage you to dive deep into 
one only cloud provider. You can get a much better deal and a 
vast improvement in agility if you pick the best features of one 
cloud vendor that are most suitable your business case. If 
you’re an innovative  you’d better focus on delivering what your 
business need.

Best Practice 2. Decide on what matters to you and assess 
other migration strategies that better support your goal. “Lift 
and Shift” seems easy, but it often isn’t. It can create many 
other problems that you wouldn’t expect and it doesn't neces-
sarily solved your exsiting problems.

Best Practice 3. The simplest pricing model will most likely 
cost you more: you may overpay by 30% over the price you 
would pay otherwise. The more commitment you can make, the 
higher discounts and better pricing you can get. Take your time, 
analyse different pricing models, and pick the one that suits 
your needs better. Do not use ‘pay-as-you-go’ when you 
already have a predictably consistent workload.

Best Practice 4. New cloud technologies are often exciting. 
Just be a little bit patient and wait for them to mature. Experi-
ment with features and build POC before making critical 
architectural decisions. Usually, proper re-design of software 
architecture is required to fit existing applications into new 
paradigms, frameworks or platforms; simplistic ‘refactoring’ 
does not yield sufficient advantage from using new and 
‘revolutionary’ technology. The good thing with the cloud is that 
you can relatively quickly build prototypes and run tests. Take 
advantage of that and try before you buy! Last but not least, 
calculate the cost to benefit ratio.

Best Practice 5. Consider where to place your data carefully, 
taking into account all requirements and data related regula-
tions in your industry.

Best Practice 6. Consider using a new generation of network-
ing solutions. Explore possibilities software-defined networking 
offers to you. AppWANs create encrypted and secure commu-
nication tunnels between service endpoints and clients running 
in the cloud and on-premise. Implementation of Zero Trust 
Network Access and Micro Segmentations architectural princi-
ples address strict security requirements for hybrid- and 
multi-cloud deployments. You can also run AppWANs on top of 
the Internet as they improve its performance (better route 
selection, protocol enhancements, use of cloud operators’ 
backbone networks) and replace the need for flawed VPN.

Best Practice 7. Do not rely only on cloud providers to secure 
your backups. Data losses and outages happen. Cloud provid-

ers cannot protect you from it completely. You should have a 
disaster recovery plan, implement backups according to that 
plan, and  - most importantly - have a working and realistic 
disaster recovery strategy. You should also test your recovery 
procedures regularly.  We can see that recovery plans become 
stale very soon, and they are not updated and tested often 
enough to stay up-to-date with production systems.  When 
designing and testing a recovery plan, you do not have to 
obsess about the ‘asteroid’ hitting us-east coast nightmare 
excessively. Instead, a more realistic scenario, like database 
corruption, a malicious virus activity, or human errors are 
disastrous enough to trigger disaster recovery processes that 
you want to have tested.

Best Practice 8. Security in the cloud is your responsibility! You 
decide how you implement your system’s security: what 
encryption protocols are used, what access policies look like, 
how complex and long-lived passwords are, which network 
ports and IP addresses are allowed to traverse firewalls, how 
often you rotate access or encryption keys, what security 
patches you install on servers you manage, and so forth.

Best Practice 9. Explore the idea of separating workloads into 
several accounts. You may want to keep testing environments 
separate from production environments. You can further 
separate them by a distinctive business function; you may also 
maintain different accounts to keep Identity Management and 
access policies. Source code, build, and delivery pipelines could 
all also reside in an account separate from other applications. 
It’s often easier to design a multi-account strategy early in the 
process of moving to the cloud.

Best Practice 10. Aim to automate IT operation processes 
from the start. Do not let automation be merely an afterthought 
and keep adding to your technical debt. Configure rules 
preventing changes to resources that would lead to suboptimal 
configurations of security and compliance standards (e.g., 
creating publicly readable files storing unencrypted backups, 
web services with unsafe endpoint URLs). Implement self-re-
pair whenever possible; when free disk space on a virtual 
machine drops below a specified threshold, a new disk can be 
added automatically. When looking for unusual spikes in traffic, 
enable machine-learning-based, adaptive,  anomaly detection 
algorithms that can adjust observations by seasonality. Keep 
build automation around software deployments; pipelines can 
easily use blue/green or canary types of delivery that ensure 
the much-improved quality of software deployments and 
eliminate configuration drift. Take advantage of automated 
scaling; system administrators no longer need to adjust capaci-
ty periodically.



Webellian Sp. z o.o.
ul. Domaniewska 45

02-672 Warsaw, Poland
+48 22 213 12 16

webellian.com


